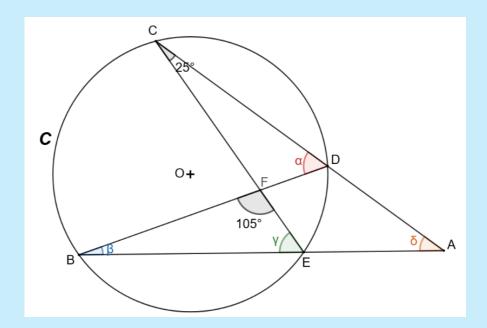

Voici un croquis. Le centre du cercle c est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque étape de ton raisonnement.

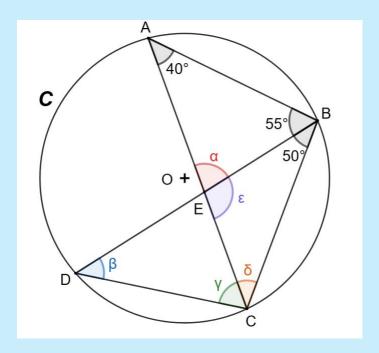
BAC = 90° car cercle de Thalès

 β = 180 – 90 – 40 = 50° car la somme des angles d'un triangle vaut 180°

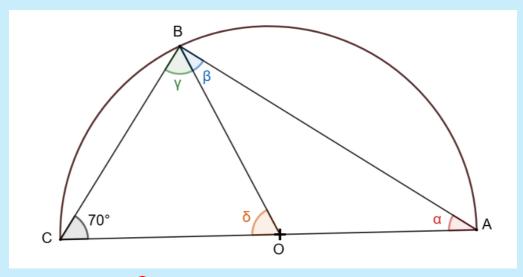

 β = δ car angles inscrits interceptant le même arc de cercle \widehat{AC}

 $\widehat{\text{CED}}$ = 180 – 110 = 70° car angle supplémentaire de $\widehat{\text{BED}}$

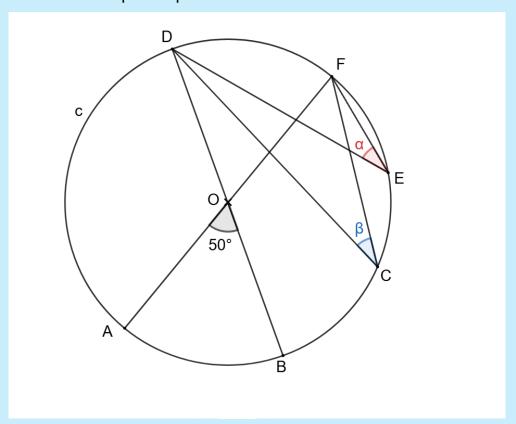
 γ = 180 – 70 – 50 = 60° car la somme des angles d'un triangle vaut 180°


 α = γ = 60° car angles inscrits interceptant le même arc de cercle BD

Voici un croquis. Le centre du cercle c est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque étape de ton raisonnement.


 $\widehat{DCE} = \beta = 25^\circ$ car angles inscrits interceptant le même arc de cercle \widehat{DE} $\gamma = 180 - 105 - 25 = 50^\circ$ car la somme des angles d'un triangle vaut 180° $\alpha = \gamma = 50^\circ$ car angles inscrits interceptant le même arc de cercle \widehat{CB} $\widehat{ADB} = 180 - 50 = 130$ car angle supplémentaire de α $\delta = 180 - 25 - 130 = 25^\circ$ car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle c est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque étape de ton raisonnement.


 $\widehat{\mathsf{ABD}} = \gamma = 55^\circ$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{AD}}$ $\widehat{\mathsf{BAC}} = \beta = 40^\circ$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{BC}}$ $\alpha = 180 - 40 - 55 = 85^\circ$ car la somme des angles d'un Δ vaut 180° $\epsilon = 180 - 85 = 95^\circ$ car angle supplémentaire de α $\delta = 180 - 95 - 50 = 35^\circ$ car la somme des angles d'un Δ vaut 180°

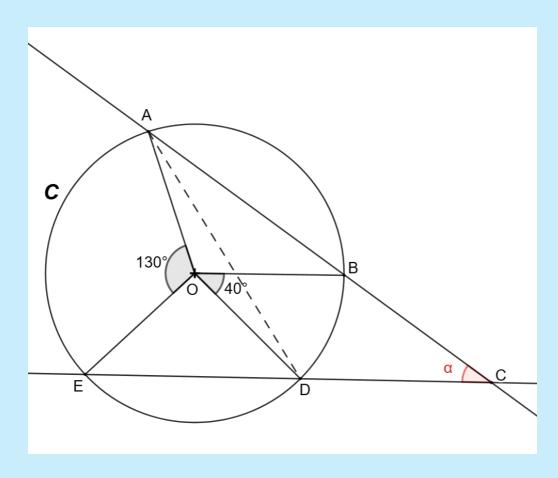
Voici un croquis. Le centre du cercle c est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque étape de ton raisonnement.

 $\gamma + \beta = 90^\circ$ car \widehat{ABC} se trouve sur le cercle de Thalès $\alpha = 180 - 70 - 90 = 20^\circ$ car la somme des angles d'un triangle vaut 180° $\alpha = \beta = 20^\circ$ car Δ AOB est isocèle en O, car OA = OB = rayons du cercle $\gamma = 90 - 20 = 70^\circ$ car angle complémentaire de β $\delta = 180 - 70 - 70 = 40^\circ$ car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle c est le point O. Calcule la mesure de chacun des angles α et β . Justifie chaque étape de ton raisonnement.

 $\widehat{AOB} = \widehat{DOF} = 50^{\circ}$ car angles opposés par le sommet

 $\alpha = \frac{50}{2} = 25^{\circ}$ car $\widehat{\text{DOF}}$ est l'angle au centre de α , interceptant le même arc


de cercle DF

 α = β = 25° car angles inscrits interceptant le même arc DF

Voici un croquis. Le centre du cercle c est le point O.

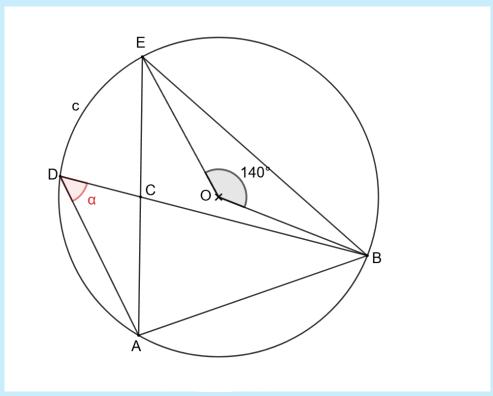
Calcule la mesure de l'angle α .

Justifie chaque étape de ton raisonnement

$$\widehat{DAB} = \frac{40}{2} = 20^{\circ} \text{ car } \widehat{BOD} \text{ est l'angle au centre de } \widehat{DAB} \text{ interceptant le}$$

même arc de cercle BD

$$\widehat{ADE} = \frac{130}{2} = 65^{\circ} \text{ car } \widehat{AOE}$$
 est l'angle au centre de \widehat{ADE} interceptant le


même arc de cercle AE

$$\widehat{ADC}$$
 = 180 – 65 = 115° car angle supplémentaire de \widehat{ADE} α = 180 – 115 – 20 = 45° car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle c est le point O.

Calcule la mesure de l'angle α sachant que le triangle BEA est isocèle de sommet $\mathsf{E}.$

Justifie chaque étape de ton raisonnement

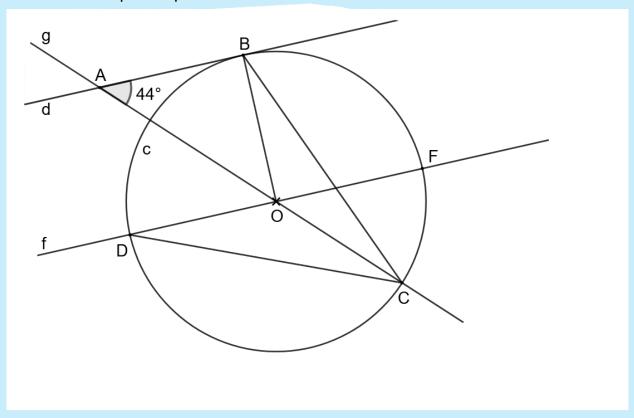
$$\widehat{BAD} = \frac{140}{2} = 70^{\circ} \text{ car } \widehat{BOD} \text{ est l'angle au centre de } \widehat{BAD}, \text{ interceptant le}$$

même arc de cercle BE

$$\widehat{AEB} = 180 - 70 - 70 = 40^{\circ}$$
 car $\triangle AEB$ est isocèle

 $\alpha = \widehat{AEB} = 40^{\circ}$ car angles inscrits interceptant le même arc de cercle \widehat{AB}

O est le centre du cercle.


La droite d passant par A est tangente au cercle en B.

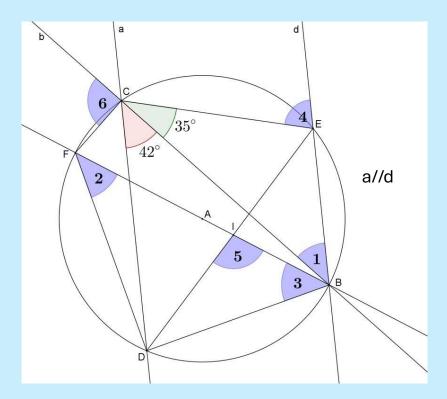
La droite f est parallèle à d et passe par O, elle coupe le cercle en D et F.

La droite g passe par A et O, elle coupe le cercle en C.

Détermine la mesure des angles ODC et ABC .

Justifie chaque étape de ton raisonnement.

La droite d passant par A est tangente au cercle en B \Rightarrow \overrightarrow{ABO} = 90°


$$\widehat{ODC} = \frac{44}{2} = 22^{\circ} \operatorname{car} \widehat{FOC}$$
 est l'angle au centre de \widehat{FDC} interceptant le même arc

$$\widehat{OBC} = \frac{180 - 134}{2} = 23^{\circ}$$
 car $\triangle BOC$ est isocèle, $OB = OC = rayon$ du cercle et la

somme des angles d'un triangle vaut 180°

$$\widehat{ABC}$$
 = 90 + 23 = 113° (angles adjacents)

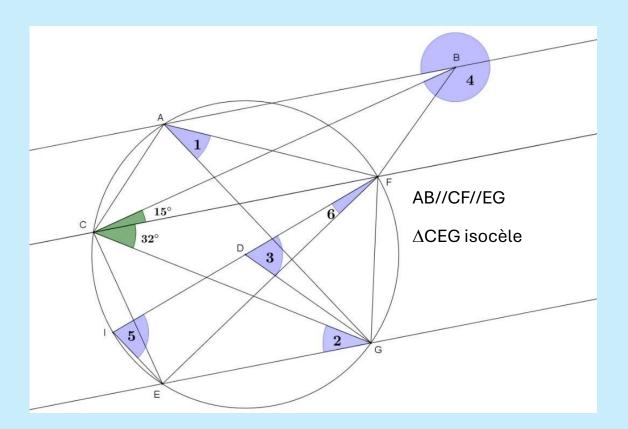
A est le centre du cercle. Détermine la mesure des angles 1 à 6. Justifie chaque étape de ton raisonnement.

$$\bullet$$
 = \widehat{DCB} = \widehat{CBE} = 42° angles alternes internes

$$\mathbf{Q} = \widehat{\mathsf{DFB}} = \widehat{\mathsf{DCB}} = 42^\circ \text{ car angles inscrits interceptant le même arc } \widehat{\mathsf{BD}}$$

FDB = 90° car cercle de Thalès

$$\odot$$
 = \overrightarrow{FBD} = 180 – 90 – 42 = 48° car la somme des angles d'un triangle vaut 180°


$$\bullet$$
 = DCE = 35 + 42 = 77° angles alternes internes

$$\widehat{\mathsf{EDB}} = \widehat{\mathsf{ECD}} = 35^\circ$$
 car angles inscrits interceptant le même arc $\widehat{\mathsf{EB}}$

6 =
$$\widehat{\text{DIB}}$$
 = 180 - $\widehat{\text{FBD}}$ - $\widehat{\text{EDB}}$ = 180 - 35 - 48 = 97° car la somme des angles d'un triangle vaut 180°

FCB = 90° car cercle de Thalès

D est le centre du cercle. Détermine la mesure des angles 1 à 6. Justifie chaque étape de ton raisonnement.

$$\bullet$$
 = \widehat{FAG} = \widehat{FCG} = 32° car angles inscrits interceptant le même arc \widehat{FG}

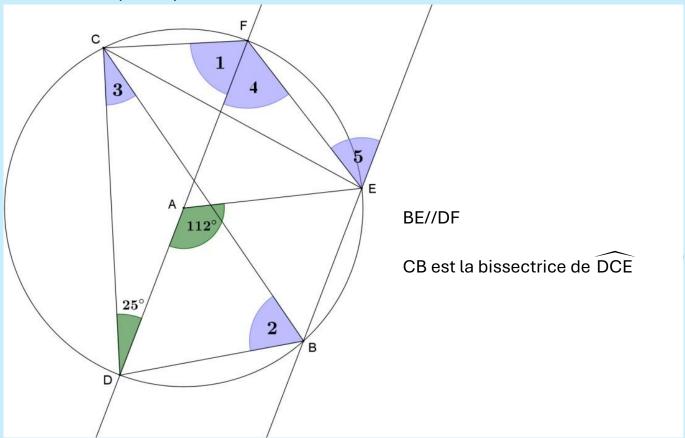
$$\mathbf{2} = \overrightarrow{\mathsf{CGE}} = \overrightarrow{\mathsf{FCG}} = 32^{\circ} \text{ car angles alternes internes}$$

$$\mathbf{3} = \widehat{\mathsf{FDG}} = 2 \, \widehat{\mathsf{x}} \, \widehat{\mathsf{FCG}} = 64^{\circ} \, \widehat{\mathsf{car}} \, \widehat{\mathsf{FDG}}$$
 angle au centre de $\widehat{\mathsf{FCG}}$ interceptant le

même arc FG

EF

$$\overrightarrow{ECG} = 2 = 32^{\circ} \operatorname{car} \Delta CEG \operatorname{isocèle}$$


$$\mathbf{6} = \widehat{\mathsf{EIF}} = \widehat{\mathsf{ECF}} = 32 + 32 = 64^\circ$$
 car angles inscrits interceptant le même arc

ÎEF = 90° car cercle de Thalès

$$\mathbf{6} = 180 - 90 - 64 = 26^{\circ}$$
 car la somme des angles d'un triangle vaut 180°

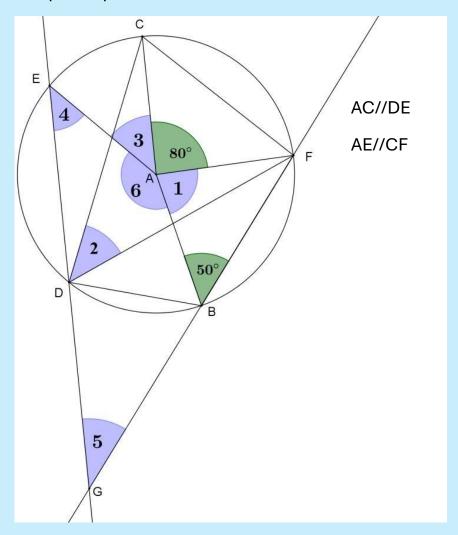
A est le centre du cercle. Détermine la mesure les angles 1 à 5.

Justifie chaque étape de ton raisonnement.

DCF = 90° car cercle de Thalès

$$\bullet$$
 = $\widehat{\mathsf{CFD}}$ = 180 – 90 – 25 = 65° car la somme des angles d'un Δ vaut 180°

$$\mathbf{2} = \mathbf{0} = \widehat{\mathsf{CBD}} = \widehat{\mathsf{CFD}} = 65^{\circ}$$
 car angles inscrits interceptant le même arc $\widehat{\mathsf{CD}}$


même arc DE

DCE = DFE = 56° car angles inscrits interceptant le même arc DE

3 =
$$\widehat{DCB}$$
 = $\frac{\widehat{DCE}}{2}$ = $\frac{56}{2}$ = 28° car CB est la bissectrice de \widehat{DCE}

6 = **4** = 56° car angles alternes internes

A est le centre du cercle. Détermine la mesure les angles 1 à 6. Justifie chaque étape de ton raisonnement.

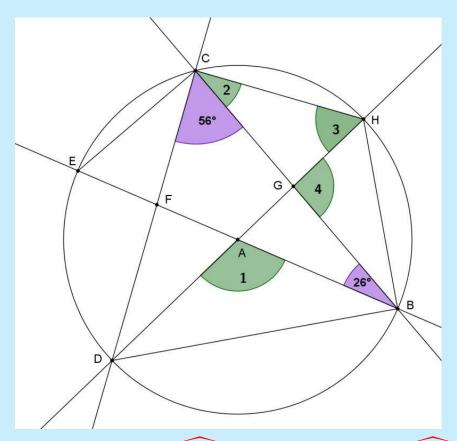
 \bullet = 180 – 50 – 50 = 80° car \triangle BAF isocèle en A et la somme des angles d'un triangle vaut 180°

2 =
$$\frac{80}{2}$$
 = 40° car \widehat{CAF} est l'angle au centre de \widehat{CDF} interceptant le même arc de

cercle CF

$$\widehat{ACF} = \frac{180 - 80}{2} = 50^{\circ}$$
 car $\triangle CAF$ isocèle en A et la somme des angles d'un

triangle vaut 180°


3=
$$\widehat{\mathsf{ACF}}$$
 = 50° angles alternes internes

4 = 3 = 50° angles alternes internes

$$6 = 360 - 80 - 80 - 50 = 150^{\circ}$$
 car angle plein

 $\mathbf{6}$ = 360 – 50 – 50 – 80 – 150 = 30° car la somme des angles du quadrilatère GEAF vaut 360°

A est le centre du cercle. Détermine la mesure des angles 1 à 4. Justifie chaque étape de ton raisonnement.

• = 2 x 56 = 112° car DAB est l'angle au centre de DCB interceptant le même arc

de cercle DB

DCH = 90° car cercle de Thalès

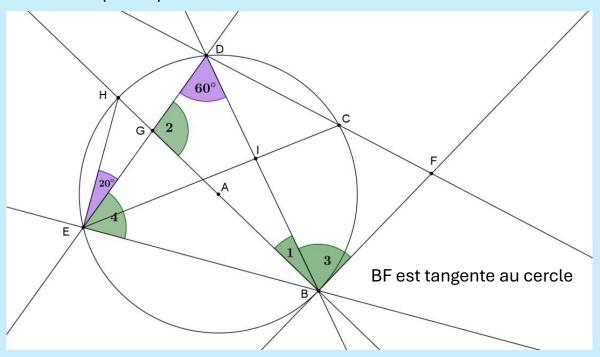
2 = 90 – 56 = 34° car angles complémentaires

ECB = 90° car cercle de Thalès

 $\widehat{\text{CEB}}$ = 180 – 90 – 26 = 64° car la somme des angles d'un triangle vaut 180°

 $\widehat{CDB} = \widehat{CEB} = 64^{\circ}$ car angles inscrits interceptant le même arc \widehat{CB}

 $\widehat{ABD} = \frac{180 - 112}{2} = 34^{\circ} \text{ car } \Delta DAB \text{ isocèle en A et la somme des angles d'un}$


triangle vaut 180°

 \odot = \widehat{DBC} = 60° car angles inscrits interceptant le même arc \widehat{CD}

 $\widehat{\text{CGH}}$ = 180 – 34 – 60 = 86° car la somme des angles d'un triangle vaut 180°

 $\Phi = 180 - \widehat{CGH} = 180 - 86 = 94^{\circ}$ car angles supplémentaires

A est le centre du cercle. Détermine la mesure des angles 1 à 4. Justifie chaque étape de ton raisonnement.

 $\mathbf{0} = \widehat{\mathsf{HBD}} = \widehat{\mathsf{HED}} = 20^\circ$ car angles inscrits interceptant le même arc $\widehat{\mathsf{HD}}$

 $2= 180-60-20 = 100^{\circ}$ car la somme des angles d'un triangle vaut 180°

ABF = 90° car est tangente au cercle

3 = 90 – 20 = 70° car angles complémentaires

HEB = 90° car cercle de Thalès

4= 90 – 20 = 70° car angles complémentaires