Exercice 3.1

Les droites B et C sont parallèles.

Complète:

Les angles 1 et 6 sont alterne – internes

Le angles 6 et 8 sont opposés par le sommet

Les angles 7 et 4 sont alterne - externes

Les angles 4 et 5 sont correspondants

Les angles 2 et 5 sont alterne – internes

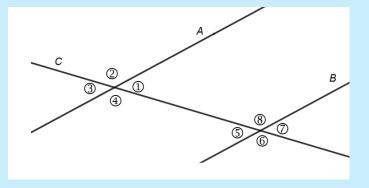
Les angles 3 et 8 sont alterne- externes

Les angles 2 et 4 sont opposés par le sommet

Les angles 3 et 6 sont correspondants

Exercice 3.2

Les droites A et B sont parallèles.



Complète:

Les angles 1 et 7 sont correspondants

Les angles 5 et 7 sont opposés par le sommet

Les angles 7 et 3 sont alternes-externes

Les angles 5 et 3 sont correspondants

Les angles 5 et 1 sont alternes - internes

Les angles 2 et 6 sont alternes - externes

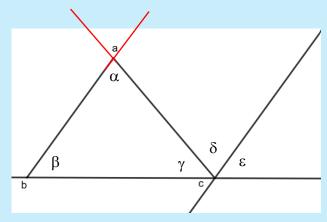
Les angles 8 et 6 sont opposés par le sommet

Les angles 4 et 8 sont alternes - internes

Enumère tous les angles isométriques à l'angle 1 3, 7 et 5

Exercice 3.3

Soit un triangle *abc*. On prolonge le côté [*bc*] et on mène une parallèle à *ab* par *c*.



A l'aide de cette construction, démontre que la somme des angles du triangle abc égale 180°.

Cette propriété peut-elle être généralisée à tous les triangles ?

On a
$$\gamma + \delta + \epsilon = 180^{\circ}$$

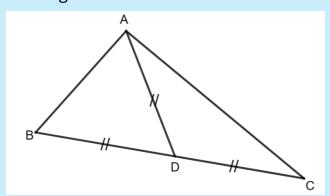
On a $\beta = \epsilon$, angles correspondents

On a $\alpha = \delta$, angles alternes internes

 $\Rightarrow~\alpha$ + β + γ = 180°, on peut donc généraliser cette propriété à tous les Δ

Exercice 3.4

Sachant que \widehat{DAB} = 65° et que AD = BD = DC, le triangle ABC est-il rectangle en A ? Justifie ta démarche.



 Δ DAB est isocèle en D, donc $\widehat{DAB} = \widehat{DBA} = 65^{\circ}$

 $\widehat{ADB} = 180^{\circ} - 2 \cdot 65^{\circ} = 50^{\circ}$ car la somme des angles d'un triangle vaut 180°

 \widehat{ADC} = 180° – 50° = 130° car c'est l'angle supplémentaire de \widehat{ADB}

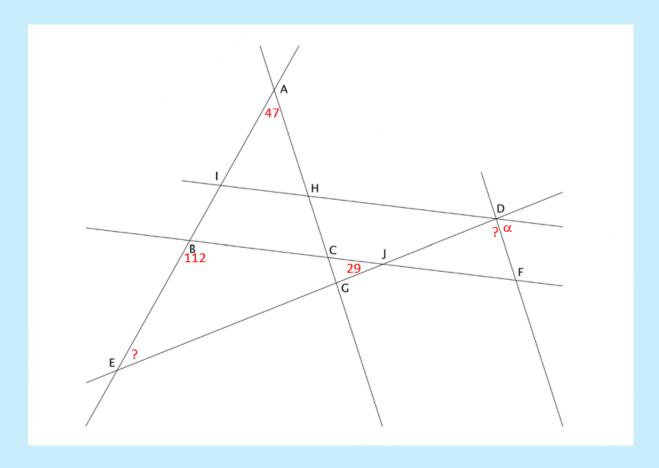
 \triangle ADC est isocèle en D donc $\widehat{DAC} = \widehat{DCA} = \frac{180^{\circ} - 130^{\circ}}{2} = \frac{50^{\circ}}{2} = 25^{\circ}$ donc le \triangle

ABC est rectangle en A: 65° + 25° = 90°

Exercice 3.9

Calcule la valeur des angles JDF et GEB, sachant que AG est parallèle à DF et HD est parallèle à CF. Justifie chaque étape de ton raisonnement.

$$\widehat{\mathsf{BAC}} = 47^{\circ}$$
 $\widehat{\mathsf{EBC}} = 112^{\circ}$ $\widehat{\mathsf{CJG}} = 29^{\circ}$



 $\widehat{\text{GEB}}$ = 180 – 112 – 29 = 39° car la somme des angles d'un triangle vaut 180°

$$\widehat{IBC}$$
 = 180 – 112 = 68° car \widehat{IBC} angle supplémentaire de \widehat{EBC}

 \overrightarrow{ACB} = 180 – 47 – 68 = 65° car la somme des angles d'un triangle vaut 180°

$$\overrightarrow{DFJ} = \overrightarrow{ACB} = 65^{\circ}$$
 car angles correspondents

CJG = DJF = 29 ° car angles opposés par le sommet

 $\overline{\text{JDF}}$ = 180 – 29 – 65 = 86° car la somme des angles d'un triangle vaut 180°