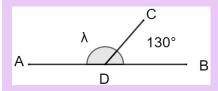
JE METS EN PRATIQUE

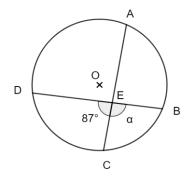
Donne les justifications des calculs, aide-toi des schémas.



Exemple:

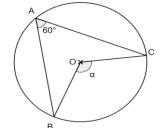
 $\lambda = 180^{\circ} - 130^{\circ} = 50^{\circ} \text{ car } \widehat{\text{CDB}} \text{ et } \lambda \text{ sont des angles supplémentaires}$

1.



 $\alpha = 180^{\circ} - 87^{\circ} = 93^{\circ}$ car \overrightarrow{DEC} et \overrightarrow{CEB} sont des angles supplémentaires

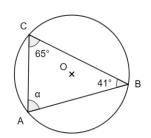
2.



 $\alpha = 2 \cdot 60^{\circ} = 120^{\circ}$ car \overrightarrow{BOC} est l'angle au centre de \overrightarrow{BAC} , interceptant le

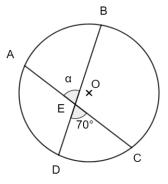
même arc BC

3.



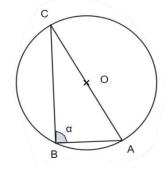
 $\alpha = 180^{\circ} - 65^{\circ} - 41^{\circ} = 74^{\circ}$ car la somme des angles d'un triangle vaut 180°

4.



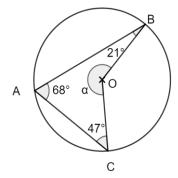
 $\alpha = 70^{\circ}$ car \widehat{DEC} et \widehat{AEB} sont opposés par le sommet

5.



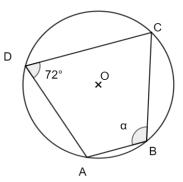
 α = 90° car cercle de Thalès

6.



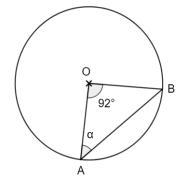
 α = 360 – 68 – 21 – 47 = 224° car la somme des angles d'un quadrilatère vaut 360°

7.



 α = 180° – 72° = 108° car la somme des angles opposés d'un quadrilatère inscrit vaut 180°

8.

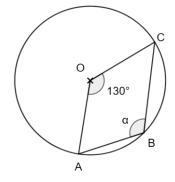


OA = OB car rayons du cercle

 $2 \alpha = 180^{\circ} - 92^{\circ} = 88^{\circ}$ $\alpha = 88^{\circ} \div 2 = 44^{\circ}$ car AOB est un triangle isocèle

On utilise aussi la propriété que la somme des angles d'un triangle vaut 180°

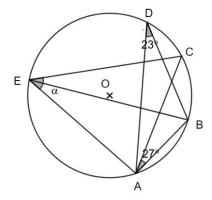
9.



 $\widehat{\text{COA}}$ = 360° – 130° = 230° car angle plein

 $\alpha = 230^{\circ} \div 2 = 115^{\circ}$ car \widehat{COA} est l'angle au centre de \widehat{ABC} interceptant le même grand arc \widehat{AC}

10.

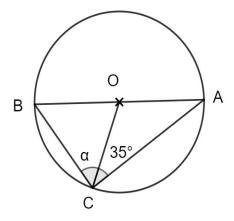


CEB = 27° car angle inscrit interceptant le même arc CB que CAB

 \widehat{AEB} = 23° car angle inscrit interceptant le même arc \widehat{AB} que \widehat{ADB}

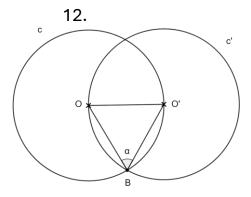
$$\alpha = 23^{\circ} + 27^{\circ} = 50^{\circ}$$

11.



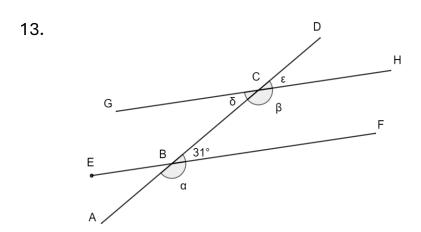
BCA = 90° car cercle de Thalès

 $\alpha = 90^{\circ} - 35^{\circ} = 55^{\circ}$ car \widehat{BCO} est complémentaire de \widehat{OCA}



OO'= OB et OO'=O'B car rayons du cercle

 α = 60° car dans un triangles équilatéral les 3 angles sont égaux sachant que la sommes des angles d'un triangle fait 180°



Par exemple... il peut y avoir d'autres justifications correctes

 δ = 31° car angle alterne interne de \widehat{CBF}

 ϵ = 31° car angle opposé de δ

 α =180°-31° = 129° car α est un angle supplémentaire de $\widehat{\mathsf{CBF}}$

 β =129° car est un angle correspondant de α