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FA- EQUATIONS ET SYSTEMES D’EQUATIONS 

 

Apprentissages visés  

• Résolution de problèmes nécessitant le recours à l’algèbre 

• Traduction d’une situation par : 

o une équation du premier degré à une inconnue 

o un système d’équations du premier degré à deux inconnues 

o une équation du deuxième degré à une inconnue  

• Résolution : 

o d’une équation du premier degré à une inconnue à l’aide des 

règles d’équivalence 

o d’un système d’équations du premier degré à deux inconnues à 

l’aide des méthodes de combinaison linéaire et de substitution 

o d’une équation du deuxième degré à une inconnue par 

factorisation ou à l’aide de la formule de Viète  

• Expression de chacune des variables d’une formule connue en 

fonction des autres: d = vt ; A = r2 ; A = bh
2

 ; … 
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1.1 Résolution d’une équation du 1er degré à une inconnue 
 

La notion d’équation est liée à la notion d’inconnue souvent 

nommée x. Cependant pour qu’il y ait équation cela ne suffit 

pas. Il faut avoir en plus une égalité et surtout qu’elle ne soit 

pas toujours vérifiée.  

Définition 1 : On appelle équation à une inconnue, une égalité qui n’est 

vérifiée que pour certaine(s) valeur(s) d’une quantité x appelée inconnue. 

Écrire une équation revient donc à se poser la question : Pour quelle(s) 

valeur(s) de x l’égalité est-elle vérifiée ? 

Exemples : 

▪ 7x + 3  

Ce n’est pas une équation, mais une expression algébrique. Il n’y a pas 

d’égalité. 

▪ 2(2x + 3) = 4x + 6 

Ce n’est pas une équation, mais une égalité qui est toujours vérifiée. 

▪ 2x + 5 = 7 

C’est une équation car seule la valeur x = 1 vérifie l’égalité. 

Définition 2 :  Une équation du premier degré est une équation où l’inconnue x 

n’apparaît qu’à la puissance 1. 
 

Exemples 

▪ 2x + 3 = 7x + 5 est une équation du premier degré. 

▪ 2x2 + 5x – 7 = 0 est une équation du second degré. 

▪ 
7x + 1
2x + 3

 = 5 est une équation rationnelle qui peut se ramener au premier degré. 

1.EQUATIONS DU 1ER DEGRÉ 
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Règles de base 
 

Règle 1 On ne change pas une équation si l’on ajoute ou retranche un même 
nombre de chaque côté de l’égalité. 

Exemple : 

Soit l’équation : 2x + 3 = 5 

Ajoutons ( – 3) de chaque côté de l’égalité, on a donc : 

2x + 3 – 3 = 5 − 3 

2x = 2 
 

Remarques : 
1. Dans la pratique on retiendra le raccourci, que tout le monde retient, pour 
faire passer un terme de l’autre côté de l’égalité, on le change de signe :                            
de 2x + 3 = 5 on fait passer le 3 de l’autre côté donc 2x = 5 – 3 
2. Cette règle permet de laisser l’inconnue à gauche de l’égalité. On dit qu’elle 
permet d’isoler l’inconnue. 

Exemple : 

Soit l’équation : 5x + 7 = – 3 + 2x 

On isole l’inconnue en déplaçant le 7 et le 2x, on obtient : 5x – 2x = – 7 – 3 

On regroupe les termes : 3x = – 10 
 

Règle 2 On ne change pas une équation si l’on multiplie ou divise par un même 
nombre non nul chaque terme de l’égalité. 

Exemples : 

Soit les équations : 2x = 1 et 3x = – 10 

On divise par 2 la première et par 3 la seconde, on obtient alors :  

x = 1
2

 et x = – 10
3

 

Remarque : 
Dans cette deuxième règle, on ne change pas le signe. En effet, on ne dit pas 
"dans l’équation 2x = 1 le 2 passe de l’autre côté donc il change de signe". On 
divise tout simplement. Cette deuxième règle permet de déterminer l’inconnue 
une fois celle-ci isolée. 
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Exemples de résolution 

Voici quelques exemples typiques de résolution d’équation du premier degré. 
Chaque exemple permet de traiter les principales configurations rencontrées 
dans ces équations.  

Exemple 1 : 

 
3x – 5 = – x + 2 

On isole l’inconnue : 3x + x = 5 + 2 

On regroupe les termes : 4x = 7 

On calcule l’inconnue 
On divise par 4 donc : 

x = 7
4

 

On conclut par l’ensemble 

solution  S : 
S = 







7

4  

 

Exemple 2 : avec des parenthèses 

7(x + 4) – 3(x + 2) = 3(x – 1) – (x + 7) 

On enlève les parenthèses : 7x + 28 – 3x – 6 = 3x – 3 – x – 7 

On isole l’inconnue : 7x – 3x – 3x + x = – 28 + 6 – 3 – 7 

On regroupe les termes : 2x = – 32 

On calcule l’inconnue 

On divise par 2 : 

x = – 16 

 

On conclut par l’ensemble 

solution S : 

S = { }– 16  
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 Exemple 3 : avec des fractions 

2
3

 x + 1
8

 = x   (1) 

On réduit au même 

dénominateur : 

 

16x + 3
24

 = 24x
24

   (2) 

On multiplie par 24 : 16x + 3 = 24x      (3) 

On isole l’inconnue : 16x – 24x = − 3 

On regroupe les termes : – 8x = – 3 

On calcule l’inconnue 

On divise par (– 8) : 

On simplifie les signes : 

x = – 3
 – 8

 

x = 3
8

 

On conclut par l’ensemble 

solution S : 

 

S = 






3

8  

Remarque 

Dans la pratique, on passe tout de suite de la ligne (1) à la ligne 

(3) en multipliant par le dénominateur commun, soit : 

2
3

 x + 1
8

 = x    (· 24) 

16x + 3 = 24x 
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Exemple 4 : égalité entre deux fractions 

x – 3
5

 = 4 + 5x
3

 

On effectue un produit en croix, on 

a donc : 

3(x – 3) = 5(4 + 5x) 

 

On enlève les parenthèses et on 

isole l’inconnue : 

3x – 9 = 20 + 25x 

3x – 25x = 9 + 20 

On regroupe les termes : – 22x = 29 

On calcule l’inconnue 

On divise par (– 22) : 
x = – 29

22
 

On conclut par l’ensemble 

solution S : 
S = 







– 29

22  

 

Exemple 5 : des fractions et des parenthèses 

x + 2
3

 – 3(x – 2)
4

 = – 7x + 2
2

 + 2 

On multiplie par le dénominateur 

commun, ici 12 : 

4(x + 2) – 9(x – 2) = 6(– 7x + 2) + 24 

 

On enlève les parenthèses :  4x + 8 – 9x + 18 = – 42x + 12 + 24 

On isole l’inconnue : – 5x + 26 =  – 42x + 36 

On regroupe les termes : 37x = 10 

On calcule l’inconnue 

On divise par 2 : 
x = 10

37
 

On conclut par l’ensemble 

solution S : 
S = 







10

37  

Equations particulières 
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Ce sont des équations qui, après réduction, sont de la forme : 0x = b. Nous 
sommes alors dans un cas particulier que nous allons traiter à l’aide des deux 
exemples ci-dessous. 
 

Exemple 1 : une équation impossible 

2(x + 4) + 1 – 5x = 3(1 – x) + 7 

On enlève les parenthèses : 2x + 8 + 1 – 5x = 3 – 3x + 7 

On isole l’inconnue : 2x – 5x + 3x = – 8 – 1 + 3 + 7 

Si on effectue les regroupements 

des x à gauche, on s’aperçoit qu’il 

n’y en a plus. On devrait mettre 

alors 0, mais comme on cherche la 

valeur de x, par convention on 

écrira 0x. On obtient 

donc : 

0x = 1 

 

Ce qui n’est manifestement 

jamais vérifiée. L’équation n’a 

donc aucune solution. On conclut 

par l’ensemble solution : 

S =     où   est le symbole de 

l’ensemble vide 
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Exemple 2 : une infinité de solutions 
 

3(2x + 4) – 2x = 14 – 2(1 – 2x)  

On enlève les parenthèses : 6x + 12 – 2x = 14 – 2 + 4x 

On isole l’inconnue : 6x – 2x – 4x = – 12 + 14 – 2 

On regroupe les termes : 0x = 0 

Ce qui, cette fois-ci, est toujours 

vrai pour toutes les valeurs de x 

possibles. Toutes les valeurs de 

l’ensemble des réels conviennent, 

on conclut donc par : 

S =  

 

 

Conclusion 

On peut résumer les différentes éventualités d’une équation du premier degré 

dans le tableau suivant : 

Règle 3 Toute équation du premier degré peut se mettre sous la forme : ax = b 

1. Si a  0 , l’équation admet une unique solution : x = b
a

 donc S = 






b

a   

2. Si a = 0 et b  0 l’équation n’a pas de solution, donc : S =  

3. Si a = 0 et si b = 0 tout x réel est solution, donc : S =  
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Exercice 1.1.1  

Détermine l’ensemble des solutions de chacune des  équations suivantes. 
 

1) 2x + 1 = 5x + x            4x = 1       x = 1
4

           S = {1
4

} 

2) x + 4 = 5x – 8               4x = 12  x = 12
4

 = 3            S = {3} 

3) x – 4 = 2x + 1   x = − 5        S = {− 5} 

4) 5x – 5 = – 4 + 3x  2x = 1 x = 1
2

      S = {1
2

} 

5) 5x – 2x = – 4x + 3  7x = 3 x = 3
7

      S = {3
7

} 

6) 3,3x + 0,4 = 2,3x – 2,6         x =  −3         S = {−3} 

7) 1,1x – 3,4 = 2,1x – 10,4       x = 7                                 S = {7} 

8) 23,2x – 19,8 = 10,2 + 12,8x   10,4x = 30   104x = 300 

x = 300
104

 =150
52

 =75
26

               S = {75
26

} 

 

 

 

 

JE M’ENTRAÎNE 
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Exercice 1.1.1  

Détermine l’ensemble des solutions de chacune des  équations suivantes. 
 

a) 3x – 11 – 6x – 10 = 7 + 8x – 12 – 7x 

− 4x = 16   

x = − 16
4

 = − 4         S = {−4} 

b) 4(2x – 1) – 7(4x + 2) = – 6(x – 1) + 4 

8x – 4 – 28x – 14 = − 6x + 6 + 4 

−14x = 28    

x = −28
14

 = −2         S = {−2} 

c) (2x – 3)(2x + 1) = 4x2 – x + 7 

4x2 + 2x – 6x – 3 = 4x2 – x + 7 

−3x = 10         

x = − 10
3

                      S = {− 10
3

} 

d) 6(2x – 1) – 3(7x – 5) = 0 

12x – 6 – 21x + 15 = 0 

− 9x = − 9       

x = 1           S = {1} 

e) – (4 – 9x) + 2x = 5(3 + 2x) 

− 4 + 9x + 2x = 15 + 10x 

x = 19          S = {19} 
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Exercice 1.1.3 

Détermine l’ensemble des solutions de chacune des  équations suivantes. 
 

a) (2x – 3)(2x + 3)= (2x – 5)2 
4x2 – 9 = 4x2 – 20x + 25 
20x = 34 

x = 34
20

 = 17
10

             S = {17
10

} 

b) 2x – 3 – 5x = 1 – x + 5  

−2x = 9 

x = − 9
2

            S = {− 9
2

} 

c) 5(3 – x) – 4(2 – x) = 3(x + 4) – 6  
15 – 5x – 8 + 4x = 3x + 12 – 6  

− 4x = − 1  

x = 1
4 

             S = { 1
4 

} 

d) 1 – (7 – 2x) – x = 5x – 2(x – 4)  
1 – 7 + 2x – x = 5x – 2x + 8  

−2x = 14 

x =− 14
2

 =− 7            S = {−7} 

e) 3x – (4x – 8) = 2x + 3 – (x – 2)  
3x – 4x + 8 = 2x + 3 – x + 2 

− 2x = − 3 

x =3
2

              S = {3
2

} 

f) x – [(3x + 2) – 2(2 – x)] = 1 – [2x – 3(2x – 1)]  
x – [3x + 2 – 4 + 2x] = 1 – [2x – 6x + 3] 
x – 3x – 2 + 4 – 2x = 1 – 2x + 6x – 3  

− 8x = − 4 

x = 4
8

 = 1
2

             S = {1
2

 } 
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Exercice 1.1.4  
Détermine l’ensemble des solutions de chacune des  équations suivantes. 

a) 1 – 2y + 3 – 5y = – y – 1 + 2 – 4y  

− 2y = − 3 

y = 3
2

                                     S = {3
2

 } 

b) 3x – 4(x + 2) = x + 3 – (7 – 6x)  
3x – 4x – 8 = x + 3 – 7 + 6x 

− 8x = 4 

x = − 4
8

 = − 1
2

                                  S = {− 1
2

} 

c) 5z + 1 – z + 3 – 4z + 1 = 0  

0z = − 5                                       S =  

d) 7 – (2y – 3) + y = y –1 – 3(2y + 1)  
7 – 2y + 3 + y = y – 1 – 6y – 3 

4y = − 14 

y = − 14
4

 = − 7
2

                                  S = {− 7
2

} 

e) 7x – (8 – 2x) = 7x + (2x – 1) · 3 
7x – 8 + 2x = 7x + 6x – 3  

− 4x = 5  

x = − 5
4

                                    S = {− 5
4

} 

f) 6(x – 3) + 2 · 5 = 3(x – 2) + 3x – 2  

6x – 18 + 10 = 3x – 6 + 3x – 2  

− 8 = − 8                                          S =  

g) 5x · 2 – 3x · (–2) + 1 = 10 
10x + 6x + 1 = 10 
16x = 9 

x = 9
16

                                       S = { 9
16

}  
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Exercice 1.1.5  
Détermine l’ensemble des solutions de chacune des  équations suivantes. 
 

a) 5x – 3
4

 = 2x – 1               

5x – 3
4

 = 4(2x – 1)
4

   |· 4 

5x – 3 = 4(2x – 1) 

5x – 3 = 8x – 4               −3x = −1  x = 1
3

          S = {1
3

} 

b) 3x + 2
12

 = x – 4 
18

                      

3(3x + 2)
36

 = 2 (x – 4)
36

  |· 36 

3(3x + 2) = 2 (x – 4)  
9x + 6 = 2x – 8  

7x = − 14   x = − 14
7

 = − 2                      S = {−2} 

c) x
2

 – 1 = 7x – 4 
8

  

4x
8

 – 8
8

 = 7x – 4 
8

   |· 8 

4x – 8 = 7x – 4             − 3x = 4   x = − 4
3

                   S = {− 4
3

} 

d) 5
6

 x – 1
3

 = 2
3

 x – 1
2

 

5
6

 x – 2
6

 = 4
6

 x – 3
6

    |· 6 

5x – 2 = 4x – 3          x = − 1        S = {−   

e) 2
3

 x – 1
4

 = 5
9

 x – 1
6

 

24
36

 x – 9
36

 = 20
36

 x – 6
36

  |· 36 

24x – 9 = 20x – 6                  4x = 3   x = 3
4

     S = {3
4

} 

f) 4
3

 x – 1 = 1
6

 x + 1
2

 

8
6

x – 6
6

 = 1
6

x + 3
6

 

8x – 6 = x + 3                 7x = 9   x = 9
7

                                    S = {9
7

} 
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Exercice 1.1.6  
Détermine l’ensemble des solutions de chacune des  équations suivantes. 

 
a) 3 (x + 3) + 3x – 2 = 2 (6x – 2) 

3x + 9 + 3x – 2 = 12x – 4 

− 6x = − 11   x = 11
6

                           S = {11
6

} 

b) (2w + 1) – 3(5w + 1) = 2(w – 4) – (3w – 6)  
 
2w + 1 – 15w – 3 = 2w – 8 – 3w + 6 
− 12 w = 0                w = 0                            S = {0}  
      
 

c) 4 – [– 2x – (5 + 4x)] = 5x – [3 – 2(4x – 1)]  
 
4 – [– 2x – 5 – 4x] =  5x – [3 – 8x + 2]  
4 + 2x + 5 + 4x = 5x – 3 + 8x – 2  
− 7x = − 14   x = 2                            S = {2} 

 
 

d) x + 3
2

 + 3x – 2 
6

 = 6x – 2 
3

 

3(x+ 3)
6

 + 3x – 2
6

 = 2(6x – 2)
6

    |· 6 

3(x+ 3) + 3x – 2 = 2(6x – 2)  
3x + 9 + 3x – 2 = 12x – 4  

− 6x = − 11   x = 11
6

                                       S = {11
6

} 

 

e) 3x + 1
4

 – 5x  – 7
3

 = 2x + 5
 12

 

3(3x + 1)
12

 – 4(5x – 7)
12

 = 2x + 5
12

      |· 12 

3(3x + 1) – 4(5x – 7) = 2x + 5  
9x + 3 – 20x + 28 = 2x + 5 

− 13x = − 26   x = 26
13

 = 2                                                     S = {2} 

 

Exercice 1.1.7  

Détermine l’ensemble des solutions de chacune des  équations suivantes. 
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1) x + 3
5

 – 3x – 2 
6

 = 6x – 7 
10

 

6(x + 3)
30

 – 5(3x + 2)
30

 = 3(6x – 7)
30

          |· 30 

 
6(x + 3)– 5(3x + 2) = 3(6x – 7) 
 
6x + 18 – 15x + 10 = 18x – 21  

− 27x = − 49   x = 49
27

                                                 S = {49
27

}  

2) x + 3
2

 – 6x + 7
8

 = 9 – 3x
5

 – 1
8

 

20(x + 3)
40

 – 5(6x + 7)
40

 = 8(9 – 3x)
40

 – 5
40

           |· 40 

20(x + 3) – 5(6x + 7) = 8(9 – 3x) – 5 
20x + 60 – 30x – 35 = 72 – 24x – 5  

14x = 42   x = 42
14

 = 6
2

 = 3                                                 S = {3} 

3) 3x – 1
2

 






x
5  + 6 = 25 + 3

2
x 

3x – x
10

 – 3 = 25 + 3
2

x 

30x
10

 – x
10

 – 30
10

 = 250
10

 + 15x
10

         |· 10 

30x – x – 30 = 250 + 15x 

14x = 280   x = 280
14

 = 20                                                S = {20} 

4) x – 3 


1
2 x –  



x – 2

4  = 2 + 4x
3

 

x – 3
2

 x + 3(x – 2) 
4

 = 2 + 4x
3

 

12x
12

 – 18x
12

 + 9(x – 2)
12

 = 4(2 + 4x)
12

          |· 12 

   12x – 18x + 9(x – 2) = 4(2 + 4x)         
   12x – 18x + 9x – 18 = 8 + 16x 

− 13x = 26  x = −26
13

 = − 2                                                        S = {− 2} 


