Exercice 7.1 Parmi les nombres suivants, biffe ceux qui ne sont pas écrits en notation scientifique :

 $9,45 \cdot 10^{12}$ $6,67 \cdot 10^{18}$ 10,3 · 10⁴⁵ $-6,023 \cdot 10^{-27}$ 0,95 · 10⁻⁶⁷ 100,9 · 10⁸ $-6 \cdot 10^{-23}$ 457 · 10⁻⁹ - 63,657 · 10¹⁷ $-1,02 \cdot 10^{-3}$ 0,999 · 10⁻⁴ 4,012 · 10⁻⁹ $9 \cdot 10^{12}$ 10,31 · 10¹² $9,99 \cdot 10^{-16}$ 0,981 · 10⁻³ - 11,9 · 10⁷ $1,003 \cdot 10^{11}$

Exercice 7.2 Complète le tableau :

ÉCRITURE SCIENTIFIQUE		ÉCRITURE DÉCIMALE	ÉCRITURE DÉCIMALE		ÉCRITURE SCIENTIFIQUE
a.	8,3 · 10 ⁵	830000	a.	540'000'000'000	5,4 · 10 ¹¹
b.	4,5 · 10 ³	4500	b.	650'000'000	6,5 · 10 ⁸
c.	1,2 · 10-4	0,00012	c.	0,000'000'006	6 · 10 ⁻⁹
d.	7,35 · 10 ⁶	7350000	d.	1'048'000'000'000	1,048 · 10 ¹²
e.	9,81 · 10 ⁻⁵	0,0000981	e.	0,00000264	2,64 · 10 ⁻⁶
f.	4,513 · 10 ⁸	451300000	f.	20'300'000	2,03 · 10 ⁷
g.	4,513 · 10 ⁻⁴	0,0004513	g.	673,185	6,73185 · 10 ²
h.	4,513 · 10 ²	451,3	h.	8'070'000'000	8,07 · 10 ⁹
i.	4,513 · 10 ⁻⁹	0,000000004513	i.	4'000,007	4,000007 · 10 ³
j.	7,1 · 10 ¹³	71000000000000	j.	0,700600000	7,006 · 10 ⁻¹

Exercice 7.3 Ecris en notation scientifique:

1)
$$20,04 \cdot 10^6 = 2,004 \cdot 10^7$$

2)
$$13 \cdot 10^4 = 1,3 \cdot 10^5$$

3)
$$0,0000027 = 2,7 \cdot 10^{-6}$$

4)
$$0,0000035 = 3,5 \cdot 10^{-6}$$

5)
$$\frac{1.5 \cdot 10^{-2}}{5 \cdot 10^4} = 0.3 \cdot 10^{-6} = 3 \cdot 10^{-7}$$

6)
$$\frac{2.5 \cdot 10^{-5}}{5 \cdot 10^{6}} = 0.5 \cdot 10^{-11} = 5 \cdot 10^{-12}$$

7)
$$65'000'000 \cdot 0,002 = 6,5 \cdot 10^{7} \cdot 2 \cdot 10^{-3} = 13 \cdot 10^{4} = 1,3 \cdot 10^{5}$$

8)
$$0.04 \div 200'000 = 4 \cdot 10^{-2} \div 2 \cdot 10^{5} = 2 \cdot 10^{-7}$$

9)
$$0,000000400 \cdot 2'500'000 = 4 \cdot 10^{-7} \cdot 2,5 \cdot 10^{6} = 10 \cdot 10^{-1} = 10^{0}$$

10)
$$70 \cdot 5'000'000'000 \cdot 200 = 7 \cdot 10^{1} \cdot 5 \cdot 10^{9} \cdot 2 \cdot 10^{2} = 70 \cdot 10^{12} = 7 \cdot 10^{13}$$

11)
$$0,000004 \cdot 2'500'000 = 4 \cdot 10^{-6} \cdot 2,5 \cdot 10^{6} = 10 \cdot 10^{0} = 10^{1}$$

12)
$$0.008 \cdot 20'000 \div 0.0004 = 8 \cdot 10^{-3} \cdot 2 \cdot 10^{4} \div 4 \cdot 10^{-4} = 4 \cdot 10^{5}$$

Exercice 7.4 Effectue les multiplications suivantes en notation scientifique.

a)
$$(3 \cdot 10^{-1}) \cdot (2,5 \cdot 10^{-3}) = 7,5 \cdot 10^{-4}$$

b)
$$(8 \cdot 10^2) \cdot (8 \cdot 10^{-4}) = 64 \cdot 10^{-2} = 6.4 \cdot 10^{-1}$$

c)
$$(7 \cdot 10^2) \cdot (6,3 \cdot 10^2) = 44,1 \cdot 10^4 = 4,41 \cdot 10^5$$

d)
$$(9 \cdot 10^2) \cdot (4,6 \cdot 10^1) = 41,4 \cdot 10^3 = 4,14 \cdot 10^4$$

Exercice 7.5 Effectue les divisions suivantes en notation scientifique.

a)
$$(1,6 \cdot 10^{-1}) \div (2 \cdot 10^{1}) = 0,8 \cdot 10^{-2} = 8 \cdot 10^{-3}$$

b)
$$(3 \cdot 10^4) \div (5 \cdot 10^4) = 0.6 \cdot 10^0 = 6 \cdot 10^{-1}$$

c)
$$(4.8 \cdot 10^{-4}) \div (8 \cdot 10^{-1}) = 0.6 \cdot 10^{-3} = 6 \cdot 10^{-4}$$

d)
$$(4,2 \cdot 10^3) \div (7 \cdot 10^3) = 0,6 \cdot 10^0 = 6 \cdot 10^{-1}$$

Exercice 7.6 Le tableau ci-dessous indique la masse des quatre planètes telluriques du système solaire :

Planète	Mercure	Vénus	Terre	Mars
Masse	330 · 10 ²¹ kg	4871000 · 10 ¹⁵ t	5,974 ·10 ²⁴ kg	639 · 10 ²¹ kg

Ecris ces masses en notation scientifique, puis range ces planètes par ordre croissant de masse.

Planète	anète Mercure		Terre	Mars
Masse	3,3 · 10 ²³ kg	$4,871 \cdot 10^{21} t =$	5,974 ·10 ²⁴ kg	6,39 · 10 ²³ kg
		4,871 · 10 ²⁴ kg		

Terre > Vénus > Mars > Mercure

Exercice 7.7 Résous le problème suivant :

L'intestin d'un être humain contient environ 1,5 kg de bonnes bactéries. Sachant qu'une bactérie a une masse de $2 \cdot 10^{-12}$ g, combien de bonnes bactéries trouve-t-on dans l'intestin d'un être humain? Donne la réponse en notation scientifique.

Masse totale de bactéries : $1,5 \text{ kg} = 1,5 \cdot 10^3 \text{ g}$

Masse d'une bactérie : 2 · 10⁻¹² g

Calcul du nombre de bactéries :

$$\frac{1,5 \cdot 10^3}{2 \cdot 10^{-12}} = 7,5 \cdot 10^{14}$$

Exercice 7.8 Résous le problème suivant :

Saturne est la sixième planète du système solaire. Elle se situe à environ 9,5 UA du soleil. Sachant que l'**UA** est la distance moyenne entre la Terre et le Soleil (1 UA \cong 150 millions de km), quelle est la distance, en km, entre Saturne et le soleil ? Donne la réponse en notation scientifique.

La distance moyenne entre **Saturne** et le **Soleil** est d'environ : $150 \cdot 10^6 \cdot 9,5 \cong 1,425 \times 10^9 \text{ km}$

Exercice 7.9 Résous le problème suivant :

Est-il vrai que l'on peut faire le tour du monde en plaçant un milliard d'allumettes bout à bout ? (1 allumette mesure environ 5 cm).

Remarque: À l'équateur (plus grande circonférence): 40 075 km

- 1 milliard = 10^9
- $5 \cdot 10^9 \text{ cm} = 5 \cdot 10^4 \text{ km}$

c'est donc possible

Exercice 7.10 Résous le problème suivant :

Le corps humain renferme environ 5 litres de sang. Il y a 5 millions de globules rouges et 7000 globules blancs par mm³ de sang.

- a) Combien notre corps renferme-t-il de globules rouges ? de globules blancs ?
- b) La forme d'un globule rouge est assimilée à celle d'un cylindre de hauteur $3\,\mu m$. Si on empile tous ces globules rouges pour former une colonne, quelle est la hauteur de la colonne obtenue ?

Rappel 1 μ m = 1 · 10⁻⁶ m

a) $5 \text{ litres} = 5 \text{ dm}^3 = 5'000'000 \text{ mm}^3$

Nombre de globules rouges : $5 \cdot 10^6 \cdot 5 \cdot 10^6 = 2,5 \cdot 10^{13}$

Nombre de globules blancs : $5 \cdot 10^6 \cdot 7 \cdot 10^3 = 3,5 \cdot 10^{10}$

b) $1\mu m = 10^{-6} \mu m$

 $2,5 \cdot 10^{13} \cdot 3 \cdot 10^{-6} = 7,5 \cdot 10^{7}$

la hauteur est de 7,5 \cdot 10⁷ μ m

Exercice 7.11 Résous le problème suivant :

Un porte-avions coûte 3,5 millions de francs. Un billet de 50 francs a une épaisseur de 0,08 mm.

Quelle hauteur en mètres atteindrait une pile de billets de banque de 50 francs représentant cette somme ?

Calculer le nombre de billets nécessaires

On divise la somme totale par la valeur d'un billet :

$$\frac{3500000}{50}$$
 = 3,5 · 10⁶ ÷ 50 = 70 000 = 7 · 10⁴ billets

Calculer la hauteur totale de la pile

Chaque billet a une épaisseur de 0,08 mm, donc :

$$70\ 000\ \cdot 0.08 = 5\ 600\ \text{mm} = 5.6 \cdot 10^3\ \text{mm} = 5.60\ \text{m}$$

Une pile de **70 000 billets de 50 francs** aurait une hauteur de **5,60 mètres**

Exercice 7.12 Résous le problème suivant :

Combien de temps à peu près faudrait-il pour rembourser une dette d'un milliard de francs à raison d'un franc par seconde (on prendra 1 an = 365 jours).

1 milliard de secondes = 10^9

$$\frac{3600}{1 \text{ h}} = \frac{10^9 \text{ sec}}{x} \qquad x = \frac{10^9 \cdot 1}{3600} = \frac{10^9}{3600} = 2, \frac{1}{7} \cdot 10^5 \text{ h}$$

$$\frac{24 \text{ h}}{1 \text{ jour}} = \frac{2, \overline{7} \cdot 10^5 \text{ h}}{x} \quad x = \frac{2, \overline{7} \cdot 10^5}{24} = 1,16 \cdot 10^4$$

$$\frac{365 \text{ jours}}{1 \text{ an}} = \frac{1,16 \cdot 10^4}{x} \qquad x = \frac{1,16 \cdot 10^4}{365} = 3,17 \cdot 10^1 \text{ années (32 ans)}$$

Tu rembourses 1 franc par seconde.

Donc, pour **1 milliard de francs**, tu dois attendre **1 milliard de secondes**. 1 000 000 000 francs=1 000 000 000 secondes

Convertir les secondes en années, mois, jours, etc.

1 jour = $24 \cdot 60 \cdot 60 = 86400$ secondes

1 an = 365 jours = 365 · 86 400 = 31 536 000 secondes

Nombre d'années entières :

$$\frac{1\,000\,000\,000}{31\,536\,000} \approx 31,71$$
 années

Cela fait 31 années complètes, soit :

31.31 536 000=977 616 000 secondes

Calculer le reste

1 000 000 000-977 616 000=22 384 000 secondes restantes

Convertir les secondes restantes

1 mois ≈ 30 jours = 2 592 000 secondes

 $\frac{22\ 384\ 000}{2\ 592\ 000} \approx 8\ \text{mois}$ Reste : 22 384 000-(8·2 592 000) = 688 000 secondes

1 jour = 86 400 secondes

 $\frac{688\ 000}{86\ 400} \approx 7 \text{ jours}$ Reste : 688 000-(7.86 400)=84 800 secondes

1 heure = 3 600 secondes

 $\frac{84\,800}{3\,600}$ ≈23 heures Reste : 84 800-(23×3 600)=800 secondes

1 minute = 60 secondes

80060=13 minutes et 20 secondes

Il faudrait environ 31 années 8 mois 7 jours 23 heures 13 minutes et 20 secondes pour rembourser 1 milliard de francs à raison d'un franc par seconde. Exercice 7.13 Résous le problème suivant :

Les abeilles d'une ruche ont produit 2,5 kg de nectar de miel.

Pour 1g de nectar, les abeilles doivent butiner 8000 fleurs.

Les abeilles ont produit 2,5 kg de nectar.

1 g de nectar nécessite de butiner 8 000 fleurs.

Convertir les kilogrammes en grammes

2,5 kg=2 500 g

Étape 2 : Calculer le nombre total de fleurs

2500 g · 8 000 fleurs = **20 000 000 fleurs**

$$\frac{1}{8'000} = \frac{2500}{x}$$

$$x = \frac{2500 \cdot 8'000}{1} = 2.5 \cdot 10^3 \cdot 8 \cdot 10^3 = 20 \cdot 10^6 = 2 \cdot 10^7 \text{ fleurs}$$

Exercice 7.14 Résous le problème suivant :

Combien y a-t-il de secondes dans une journée ?

Calcul le nombre d'années que représentent un milliard de secondes ? (On simplifie avec une année = 365 jours)

Combien de secondes dans une journée ?

24 h · 60 min/h · 60 s/min = 86 400 secondes

Combien d'années représentent un milliard de secondes ?

 $1\,000\,000\,000 \div (365 \cdot 86\,400) \approx 31,71 \text{ années}$

