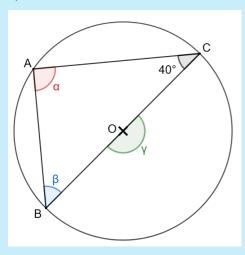

Voici des croquis. Le centre du cercle est le point O. Quelle est la mesure des angles ? Justifie chaque calcul d'angle.

A)


AOB est un Δ isocèle en O car OA = OB, rayons du cercle

$$\widehat{OAB} = \widehat{OBA} = 40^{\circ}$$

 ω est l'angle au centre de $\widehat{\mathsf{ABC}}$

interceptant le même arc AC donc il vaut 80°

B)

 α = 90°, c'est un angle droit car cercle de Thalès

 β = 180 – 40 – 90 = 50° car la somme des angles d'un triangle vaut 180° γ = 180° car angle au centre de α

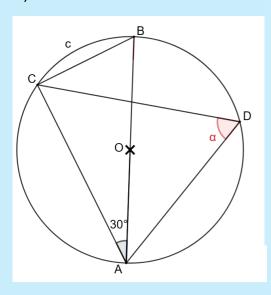
Interceptant le même arc BC

C)

BOC est un \triangle isocèle en O car OB = OC, rayons du cercle

$$\alpha = \beta = \frac{180 - 80}{2} = 50^{\circ}$$

 $\widehat{\mathsf{BOC}}$ est l'angle au centre de δ ,

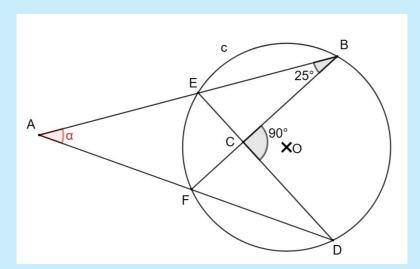

interceptant le même arc BC

donc
$$\delta = \frac{80}{2} = 40^{\circ}$$

 $\widehat{\text{COB}}$ = 360 – 80 = 280° (angle plein) γ = 360 – 40 – 25 – 280 = 15° car la somme des angles d'un quadrilatère vaut 360°

Voici des croquis. Le centre du cercle C est le point O. Quelle est la mesure de l'angle α ? Justifie chaque calcul d'angle.

A)



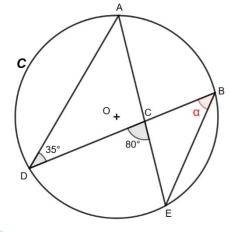
ACB = 90° car cercle de Thalès

 \widehat{ABC} = 180 – 90 – 30 = 60° car la somme des angles d'un triangle vaut 180°

 $\overrightarrow{ABC} = \alpha = 60^{\circ}$ car ce sont deux angles inscrits interceptant le même arc \overrightarrow{CA}

B)

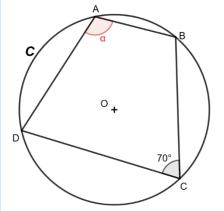
ECF = BCD = 90° car angles opposés par le sommet


BCE = 90° car angle supplémentaire de ECF

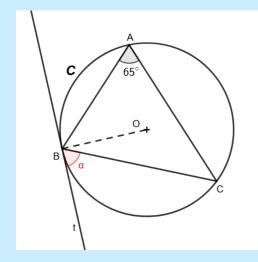
 $\widehat{DCF} = \widehat{BCE} = 90^{\circ}$ car angles opposés par le sommet

 $\widehat{\mathsf{EBD}} = \widehat{\mathsf{EDF}} = 25^\circ$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{EF}}$ $\alpha = 360 - 25 - 25 - 270 = 40^\circ$ car la somme des angles d'un quadrilatère vaut 360°

Voici des croquis. Le centre du cercle C est le point O. Quelle est la mesure de l'angle α ? Justifie chaque calcul d'angle.


A)

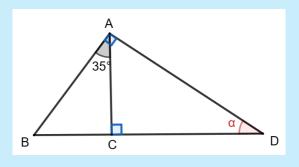
 $\widehat{BCE} = 180 - 80 = 100^{\circ}$ car angle supplémentaire de \widehat{DCE}


ADB = AEB = 35° car angles inscrits interceptant le même arc de cercle $\stackrel{\frown}{AB}$ α = 180 – 100 – 35 = 45° car la somme des angles d'un triangle vaut 180°

B)

 α = 180 – 70 = 110° car la somme des angles opposés d'un quadrilatère inscrit vaut 180°

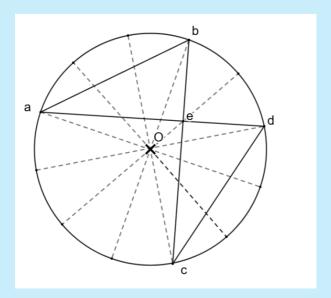
C)



 $\widehat{BOC} = 2 \cdot 56 = 130^{\circ}$ car c'est l'angle au centre de \widehat{BAC} interceptant le même arc de cercle \widehat{BC} BOC est un triangle isocèle en O, car BO = OC = rayons du cercle

Donc
$$\widehat{OBC} = \widehat{OCB} = \frac{180 - 130}{2} = 25^{\circ}$$

 α = 90 – 25 = 65° car la droite t est une tangente au cercle


D)

 $\overrightarrow{CAD} = 90 - 35 = 55^{\circ}$ car angle complémentaire de BAC

 α = 180 – 90 – 55 = 35° car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le cercle C est partagé en douze parties isométriques. Le centre du cercle C est le point O. Calcule la mesure des angles des triangles *abe* et *edc*. Justifie chaque calcul d'angle.

$$\widehat{\text{bOd}} = \frac{360}{12} \cdot 2 = 60^{\circ}$$

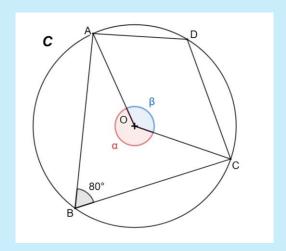
 $\widehat{\text{bad}} = \widehat{\frac{\text{bOd}}{2}} = 30^{\circ}$, car $\widehat{\text{bOd}}$ est l'angle au centre de $\widehat{\text{bad}}$ interceptant le même

arc de cercle bd

$$\widehat{\text{aoc}} = \frac{360}{12} \cdot 4 = 120^{\circ}$$

 $\widehat{abc} = \frac{\widehat{aoc}}{2} = 60^{\circ} \text{ car } \widehat{aoc} \text{ est l'angle au centre de } \widehat{abc} \text{ interceptant le même}$

arc de cercle ac

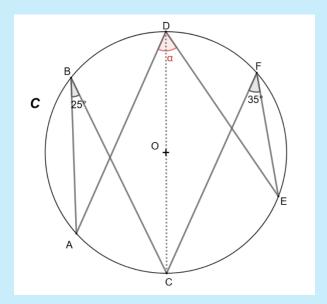

aeb = dec car angles opposés par le sommet

 $\widehat{\text{aeb}} = 180 - 60 - 30 = 90^{\circ}$ car la somme des angles d'un triangle vaut 180°

 $\widehat{abc} = \widehat{adc} = 60^{\circ}$ car angles inscrits interceptant le même arc de cercle \widehat{ac}

bad = bcd = 30° car angles inscrits interceptant le même arc de cercle bd

a) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α et β . Justifie chaque calcul d'angle.

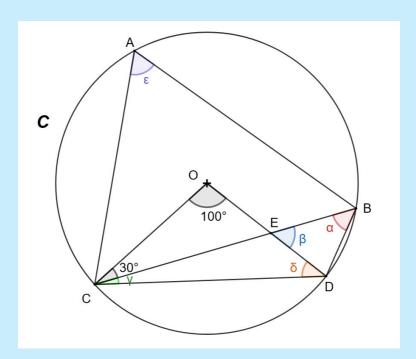

 β est l'angle au centre de \widehat{ABC} car interceptant le même arc de cercle

AC

 $\beta = 2 \cdot 80 = 160^{\circ}$

 α = 360 – 160 = 200° car angle plein

b) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de l'angle α . Justifie chaque calcul d'angle.



 $\widehat{\mathsf{ABC}} = \widehat{\mathsf{ADC}}$, car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{AC}}$

CDE = CFE, car angles inscrits interceptant le même arc de cercle CE

 α = 25 + 35 = 60°

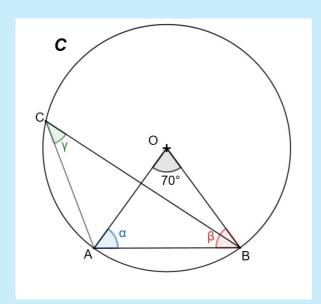
Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ , δ et ϵ . Justifie chaque calcul d'angle.

 Δ COD est isocèle en O, car OC = OD = rayons du cercle

$$\Rightarrow \delta = \frac{180 - 100}{2} = 40^{\circ}$$

$$\widehat{\text{OCD}} = \delta = 40^{\circ} \, \text{donc} \, \gamma = 40 - 30 = 10^{\circ}$$

 $\widehat{\text{COD}}$ est l'angle au centre de $\widehat{\text{CBD}}$ car interceptant le même arc de cercle $\widehat{\text{CD}}$ \Rightarrow $\widehat{\text{CBD}}$ = $\frac{100}{2}$ = 50° = α

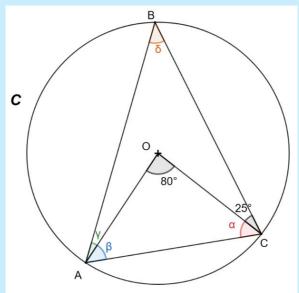

 \widehat{OEC} = 180 – 100 – 30 = 50°, car la somme des angles d'un triangle vaut 180°

 $\widehat{\mathsf{OEC}}$ = β car angles opposés par le sommet $\Rightarrow \beta$ = 50°

 $\widehat{\mathsf{BDE}} = 180 - \alpha - \beta = 80^\circ$ car la somme des angles d'un triangle vaut 180°

 ε = 180 – δ – \widehat{BDE} = 180 – 40 – 80 = 60° car la somme des angles opposés d'un quadrilatère inscrit vaut 180°

a) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β et γ . Justifie chaque calcul d'angle.

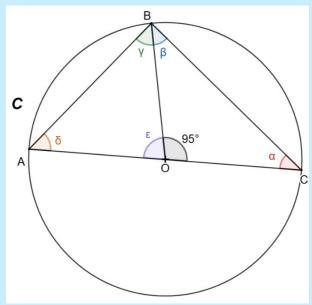


$$\alpha = \beta = \frac{180 - 70}{2} = 55^{\circ} \Delta$$
 COD est isocèle en O, car OC = OD = rayons du cercle

$$\gamma = \frac{70}{2} = 35^{\circ} \text{ car } \widehat{AOB} \text{ est l'angle}$$

au centre de ACB interceptant le même arc de cercle AB

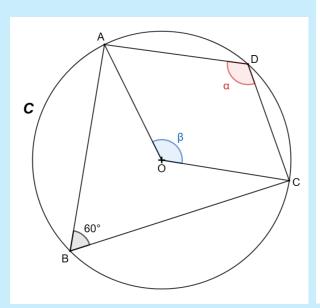
b) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.



$$\alpha$$
 = β = $\frac{180-80}{2}$ = 50° car Δ AOC est isocèle en O, car OA = OC = rayons du cercle

 $\widehat{\mathsf{AOC}}$ est l'angle au centre de δ interceptant le même arc de cercle $\widehat{\mathsf{AC}}$ donc $\delta = \frac{80}{2} = 40^\circ$

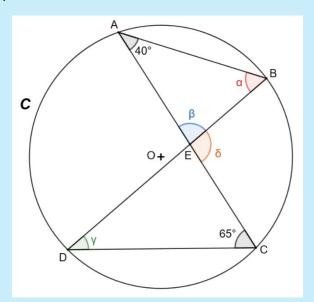
 γ = 180 – 40 – 50 – 50 – 25 = 15° car la somme des angles d'un triangle vaut 180°


a) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

$$\alpha = \beta = \frac{180 - 95}{2} = 42,5^{\circ}$$
 car Δ BOC est isocèle en O, car OB = OC = rayons du cercle

$$\epsilon$$
 = 180 – 95 = 85° car ϵ est l'angle supplémentaire de \widehat{BOC} γ = δ = $\frac{180 - 85}{2}$ = 47,5° car Δ AOB est isocèle en O, car OA = OB = rayons du cercle

b) Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de l'angle α et celle de l'angle β . Justifie chaque calcul d'angle.

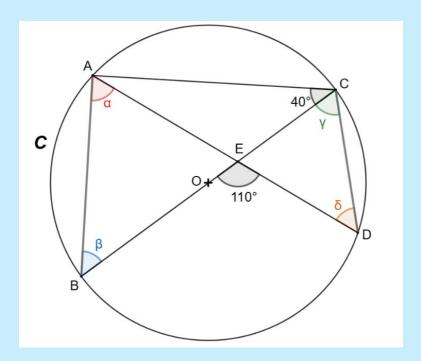


 α = 180 – 60 = 120° car la somme des angles opposés d'un quadrilatère inscrit vaut 180°

 β est l'angle au centre de \widehat{ABC} , ils interceptent le même arc de cercle \widehat{AC}

$$\beta$$
= 2 · 60 = 120 °

Voici des croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle. A)



 α = \widehat{ACD} = 65° car angles inscrits interceptant le même arc de cercle \widehat{AD} γ = \widehat{BAC} = 40° car angles inscrits interceptant le même arc de cercle \widehat{BC} β = 180 – α – 40 = 75°, car la somme des angles d'un triangle vaut 180° δ = 180 – 75 = 105° car angle supplémentaire de β

B) c 60° B

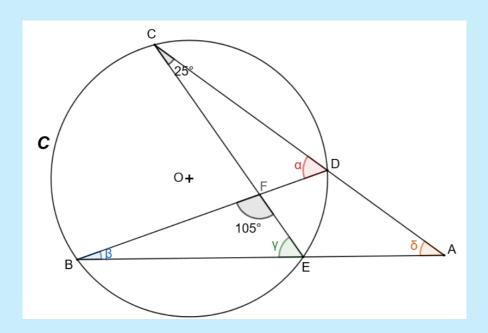
 $\alpha = \widehat{\mathsf{ABE}} = 60^\circ$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{AE}}$ $\delta = \widehat{\mathsf{BED}} = 30$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{BD}}$ $\beta = 180 - 30 - \alpha = 90^\circ$ car la somme des angles d'un triangle vaut 180° $\gamma = \beta = 90^\circ$ car sont des angles opposés par le sommet

Voici des croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

BAC = 90° car cercle de Thalès

 β = 180 – 90 – 40 = 50° car la somme des angles d'un triangle vaut 180°

 β = δ car angles inscrits interceptant le même arc de cercle AC


CED = 180 – 1

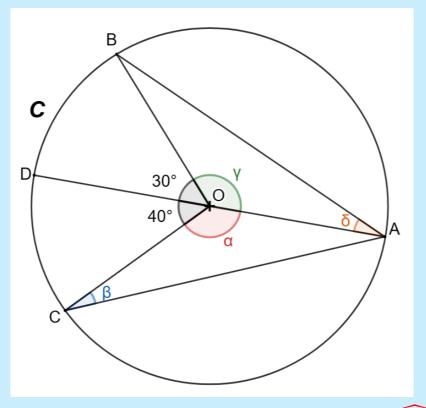
 $10 = 70^{\circ}$ car angle supplémentaire de \widehat{BED}

 γ = 180 – 70 – 50 = 60° car la somme des angles d'un triangle vaut 180°

 α = γ = 60° car angles inscrits interceptant le même arc de cercle BD

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

 $\widehat{DCE} = \beta = 25^{\circ}$ car angles inscrits interceptant le même arc de cercle \widehat{DE}

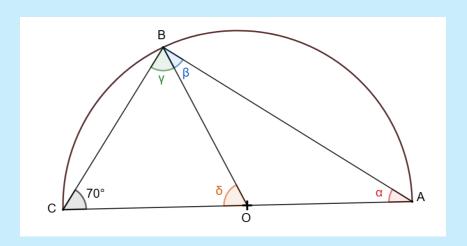

 γ = 180 – 105 – 25 = 50° car la somme des angles d'un triangle vaut 180°

 α = γ = 50° car angles inscrits interceptant le même arc de cercle CB

 \overrightarrow{ADB} = 180 – 50 = 130 car angle supplémentaire de α

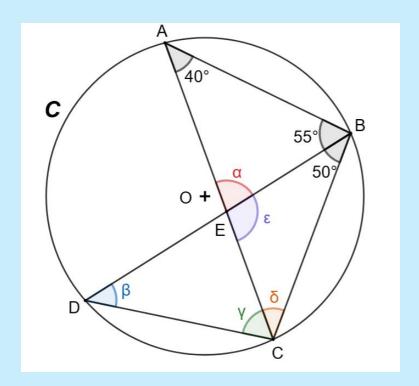
 δ = 180 – 25 – 130 = 25° car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

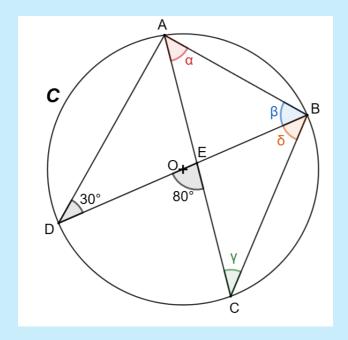

 γ = 180 – 30 = 150° car angle supplémentaire de \widehat{BOD}

$$\delta = \frac{180 - 150}{2} = 15^{\circ}$$
 car Δ AOB est isocèle en O, car OA = OB = rayons du cercle

 α = 180 – 40 = 140° car angle supplémentaire de DOC


$$\beta = \frac{180-140}{2}$$
 = 20° car Δ AOC est isocèle en O, car OA = OC = rayons du cercle

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.


 $\gamma + \beta = 90^\circ$ car \widehat{ABC} se trouve sur le cercle de Thalès $\alpha = 180 - 70 - 90 = 20^\circ$ car la somme des angles d'un triangle vaut 180° $\alpha = \beta = 20^\circ$ car Δ AOB est isocèle en O, car OA = OB = rayons du cercle $\gamma = 90 - 20 = 70^\circ$ car angle complémentaire de β $\delta = 180 - 70 - 70 = 40^\circ$ car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

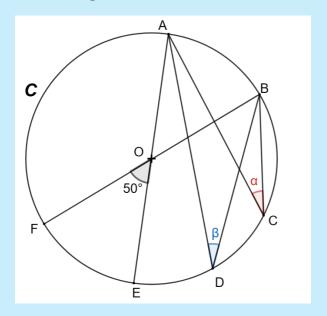
 $\widehat{\mathsf{ABD}} = \gamma = 55^\circ$ car angles inscrits interceptant le même arc de cercle $\widehat{\mathsf{AD}}$ $\widehat{\mathsf{BAC}} = \beta = 40^\circ$ car angles inscrits interceptant le même arc de cercle BC $\alpha = 180 - 40 - 55 = 85^\circ$ car la somme des angles d'un triangle vaut 180° $\epsilon = 180 - 85 = 95^\circ$ car angle supplémentaire de α $\delta = 180 - 95 - 50 = 35^\circ$ car la somme des angles d'un triangle vaut 180°

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure de chacun des angles α , β , γ et δ . Justifie chaque calcul d'angle.

 $\widehat{ADB} = \gamma = 30^{\circ}$ car angles inscrits interceptant le même arc de cercle \widehat{AB}

 $\widehat{\mathsf{BEC}}$ = 180 – 80 = 100° car angle supplémentaire de $\widehat{\mathsf{DEC}}$

 δ = 180 – 30 – 10 = 50° car la somme des angles d'un triangle vaut 180°


BAD = 90° car se trouve sur le cercle de Thalès

 β = 180 – 90 – 30 = 60° car la somme des angles d'un triangle vaut 180°

 α = 180 – 60 – 80 = 40° car la somme des angles d'un triangle vaut 180°

BEA = CED car angles opposés par le sommet

Voici un croquis. Le centre du cercle C est le point O. Calcule la mesure des angles α et β . Justifie chaque calcul d'angle.

$$\widehat{AOB} = \widehat{EOF} = 50^{\circ}$$
 car angles opposés par le sommet

$$\alpha = \frac{50}{2} = 25^{\circ}$$
 car \widehat{AOB} est l'angle au centre de α interceptant le même

arc AB

$$\alpha$$
 = β = 25°, car angles inscrits interceptant le même arc \overrightarrow{AB}

Voici un croquis. Le centre du cercle C est le point O.

Calcule la mesure de l'angle α . Justifie chaque calcul d'angle.

$$\widehat{DAB} = \frac{40}{2} = 20^{\circ}$$
 car \widehat{BOD} est l'angle au centre de \widehat{DAB} interceptant le même arc

de cercle BD

$$\widehat{ADE} = \frac{130}{2} = 65^{\circ}$$
 car \widehat{AOE} est l'angle au centre de \widehat{ADE} interceptant le même arc

de cercle AE

$$\widehat{ADC}$$
 = 180 – 65 = 115° car angle supplémentaire de \widehat{ADE}
 α = 180 – 115 – 20 = 45° car la somme des angles d'un triangle vaut 180°